

celduc[®] relais

DC SWITCHING

19 juni 2019 1931 Congrescentrum 's-Hertogenbosch elincom

SUMMARY

Celduc Relais introduction

DC switching technologies:

- Bipolar
- Mosfet
- IGBT (SCI)
- IGBT (SDI)

U & I ranges by Celduc Relais

New technologies

- Mosfet SIC
- Mosfet GAN

SUMMARY

Necessary protections of DC relays

- Energy
- Passive Over Voltage components
- Active Over Voltage protection

Energy

Passive components

- TVS
- VDR

Active Over Voltage protection

Short circuit protection

SUMMARY

Applications

- Heating (tramways) Active clamp
- Reversing motors

COMPANY OVERVIEW

- Close to St-Etienne
- 60 km from Lyon
- 500 km from Paris

- Turnover 2018 : 26,6M€
- Employees : 150

PRODUCTS

- Solid-State Relays (SSR)
- Power Controllers
- 73% of the Turnover

- Magnetic sensors for level, position, speed, safety
- 24% of the Turnover

- Reed switches and relays
- 3% of the Turnover

DC SWITCHING TECHNOLOGY

DC SWITCHING TECHNOLOGIES ⇒ BIPOLAR TRANSISTOR

It is a current amplifier. In bipolar DC SSR (e.g. SCC, SKD...), the control current is amplified through PHC, T1, T2 to T3.

Advantage : The SSR can be controlled by a very small input current

Disadvantages : The voltage drop is quite high at low load voltage even at low load current. Difficult to reach high voltage because of the number of amplifying stages required (complexity)

DC SWITCHING TECHNOLOGIES ⇒ MOSFET

In Mosfet DC relays (e.g. SCM,SOM,SPD,SKLD...) the input control current generates Gate voltage through Photovoltaic PC

Advantage : The relay has a very low voltage drop for low load voltage

Disadvantages : The control current is quite high due to the low efficiency of the photovoltaic generator. The relay has a high voltage drop for high load voltage

FLECTRONICS

celduc

DC SWITCHING TECHNOLOGIES ⇒ IGBT (SCI)

In SCI DC relays the input control current generates Gate voltage through the pulse transformer for a good switch ON and the photovoltaic PHV maintains the supply of gate voltage.

Advantage : Low voltage drop for high load voltage

Disadvantage : The control current is quite high due to the low efficiency of the photovoltaic generator.

FIECTRONICS

celduc

DC SWITCHING TECHNOLOGIES ⇒ IGBT (SDI)

In DC relays (e.g. SDI) the input control current generates Gate voltage through a negative (turn OFF) and positive (turn ON) supply

Advantages : Low voltage drop for high load voltage Low control current Integrated Protection (UVLO, Desaturation detection...) Better turn OFF with negative gate voltage

Disadvantage : Requires an auxiliary supply

Present celduc solutions

celduc® relais - Power Electronics Event - 19/06/2019

New technologies like SIC-MOSFETS and GAN-MOSFETS

- Lower RdsON
- High switching performance, higher voltage
- Higher junction T°C

BUT STILL TOO EXPENSIVE TODAY FOR USE IN SSR

• OVER-VOLTAGES FROM MAINS, WIRES, LOADS...

SHORT CIRCUIT

• ENERGY AT SWITCH OFF

Formulas

- Ip Initial current = E/R
- EL Initial energy in $L = \frac{1}{2} L Ip^2$
- Pz instant power = Vz lp

Ez energy in Zener = (Vz.Tau/R).[E+(Vz-E).ln(1-E/Vz)] With Tau = L/R

Difficult to stop the current! E=0.5 x L x l²

« E » is the energy stored in the wires or in inductive loads.

This energy must be dissipated when switching OFF.

L is the circuit inductance and « I » is the load current.

A voltage protection is mandatory!

PROTECTION WITH PASSIVE COMPONENTS

PROTECTION BY ACTIVE
CLAMP

Why C1, D1 and D2?

C1 to compensate the line inductance from the mains (dv/dt)

D1 protects the relay against overvoltages, mains and load

D2 is the free-wheel diode. It will allow magnetic energy stored in load and lines to flow, finally dissipated in heat (Joule's law)

TVS: Transient Voltage Suppressor

Can be unidirectional or bidirectional

Fast response but limited energy

VDR: Voltage Dependent Resistor

Bidirectional

More energy but ageing

Differences between varistor and Transil

	Varistor	Transil
Тороlogy	Bidirectional	Uni or Bidirectional
Leakagecurrent	< 5 μΑ	< 1 µA
8/20μs Clamping factors (= Vcl / Vbr)	2.00	1.5
ESD ruggedness	> 30 kV	> 30 kV
ESD clamping voltage	See Figure 6	See Figure 6
Ageing	Yes, see Figure 7	Yes, see Figure 7

Figure 7 shows the impact of repetitive ESD IEC 61000-4-2 level 4 contact discharge surges. After 10 surges, the I/V characteristics of the varistor changed while the Transil one presents no change.

This type of pulse corresponds to most of the standards used for the protection device.

ACTIVE CLAMP

ACTIVE CLAMP

19 juni 2019 - Den Besch

SHORT CIRCUIT

Driver chips for IGBT control

SHORT CIRCUIT

Figure 14. Application schematic for DESAT feature

Figure 15. The collector current ramp-up to 150A triggers the DESAT feature (test on 25A module)

APPLICATIONS

HEATING (TRAMWAY) WITH ACTIVE CLAMP

celduce

ELECTRONICS

uni 2019 • Den B

APPLICATIONS

REVERSING MOTORS WITH PASSIVE CLAMP

celduc® relais - Power Electronics Event - 19/06/2019

THANKS FOR YOUR ATTENTION

elincom

VISIT OUR BOOTH AT

