Reduction of parasitic inductances (ESL) in capacitors

Vermogens Elektronica
14 June 2016
Den Bosch
Fischer & Tausche was founded 1948 in Husum
- Family company
- Production and distribution of electrolytic- and metalized film capacitors
- Focus on individual developments and customized design
- Acquisition of Leclanché Capacitors (Switzerland) in 2004
- 2015 - 16 Mio Euro group sales
- 152 People in Husum + 20 people in Yverdon
- Exclusively manufacturing in Germany and Switzerland
Point of departure

- great progress in the development of IGBTs (SiC, GaN…)
- used in devices for the conversion and control of electrical energy
 - solar and wind power systems or for the power control of electric motors in e-cars
- trend toward increasingly higher switching frequencies

→ DC link capacitors must have a very low inductive design!
Inductances

- GENERAL RULE:
 - Every current in a conductor creates a magnetic field
 - Current changes over time induce voltages
 - The larger the area surrounded by a current loop, the larger is the magnetic field. This means that all electrical wires must be kept as short as possible.
 - If current carrying back and forth conductors are close together, their magnetic fields will partially cancel each other
 - Parallel-connected inductances reduce the overall inductance.
Reduction of parasitic inductances (ESL) in capacitors – Speaker: Dr. Thomas Ebel
Inductances

- **GENERAL RULE:**
 - Every current in a conductor creates a magnetic field
 - **Current changes over time induce voltages**
 - The larger the area surrounded by a current loop, the larger is the magnetic field. This means that all electrical wires must be kept as short as possible.
 - If current carrying back and forth conductors are close together, their magnetic fields will partially cancel each other
 - Parallel-connected inductances reduce the overall inductance.
Self Inductance

\[U = L \frac{dl}{dt} \]

Relationship between \(U \), \(L \) and \(l(t) \)
Inductances

- **GENERAL RULE:**
 - Every current in a conductor creates a magnetic field
 - Current changes over time induce voltages
 - The larger the area surrounded by a current loop, the larger is the magnetic field. This means that all electrical wires must be kept as short as possible.
 - If current carrying back and forth conductors are close together, their magnetic fields will partially cancel each other
 - Parallel-connected inductances reduce the overall inductance.
Magnetic fields in the same direction strengthen one another.
Inductances

- GENERAL RULE:
 - Every current in a conductor creates a magnetic field
 - Current changes over time induce voltages
 - The larger the area surrounded by a current loop, the larger is the magnetic field. This means that all electrical wires must be kept as short as possible.
 - If current carrying back and forth conductors are close together, their magnetic fields will partially cancel each other
 - Parallel-connected inductances reduce the overall inductance.
Inversely directed magnetic fields attenuate one another.
Inductances

- **GENERAL RULE:**
 - Every current in a conductor creates a magnetic field
 - Current changes over time induce voltages
 - The larger the area surrounded by a current loop, the larger is the magnetic field. This means that all electrical wires must be kept as short as possible.
 - If current carrying back and forth conductors are close together, their magnetic fields will partially cancel each other
 - **Parallel-connected inductances reduce the overall inductance.**
Effect of parasitic inductances

- **Ideal capacitor:** the reactance is proportionally inverse to the frequency → as the frequency increases, the reactance of the capacitor decreases, and with constant AC voltage the current increases accordingly
- **Real capacitor:** only approximately true and applicable only to the lower frequency range
- **Ideal vs. real capacitor:** ohmic losses (ESR) and the parasitic inductance (ESL) of the capacitor must also be considered!
Effect of parasitic inductances

- **ESR**
 - Origin of the thermal losses in the capacitor and consists of the sum of the ohmic resistances and the frequency-dependent dielectric losses

- **ESL**
 - Sum of all inductive parts of the capacitor
 - Reactance, however with a negative sign and an inverse gradient than the capacitive reactance
 - Together with the ESL, the capacitance of the capacitor forms a resonant circuit
Situation of L related to terminals/connectors of capacitors

Magnetic fields in the same direction strengthen one another
Inversely directed magnetic fields attenuate one another

Situation of L in the capacitor winding
Effect of parasitic inductances

- through the vectorial addition of the two reactances and the ESR, dependent on the frequency, it is possible to determine the impedance of the capacitor.
- **Figure:** typical V-shaped behaviour, which at its lowest point touches the ESR curve. This is the resonant point where the reactances of the capacitance and the inductance cancel each other out.
- above the resonant frequency the impedance of the capacitor is dominated by the inductive components.
Effect of parasitic inductances

Summary:

- In order to use the capacitive properties of the capacitor for a wide range of frequencies, it is necessary to shift the resonant frequency as far as possible to higher frequency values.
- At a given capacitance, this can be achieved only through consistent reduction of the parasitic inductances!
FTCAP offers innovative solutions for these problems!
Coax Cap

- capacitor winding that is completely enclosed in copper
- milled bottom surface
- extremely low inductance construction (<10nH)
- optimal thermal characteristics
- high current-carrying capacity, with no limitation of the self-healing properties
Energy Cap

- designed for frequency converters, DC filters and DC links
- connections between terminals and the far side of the most distant capacitor winding as short as possible → low inductance!
- possible to achieve inductances between 40 nH and 100 nH
Copper capacitors

- low inductance alternative to DC link capacitors in combination with fast IGBTs
- solid, enclosed copper construction and the intelligent selection of materials allows inductances below 10 nH
- thermally optimised design ensures a long life
- capacitor is isolated and therefore potential free
FischerLink

- low inductance solution from FTCAP
- capacitors are welded directly to the adjacent low inductance copper plates of the internal bus-bar (=without having their own terminals → shortening the connecting wires)
- possible to achieve an ESL of less than 20 nH even in the case of large models
Low inductance electrolytic capacitors

- possible to construct single aluminium electrolytic capacitors for DC link applications with extremely low inductance
- FTCAP uses patented short connection bands to achieve the extremely low values
- Many standard types also available as special low inductance versions
New IGBT connection terminal

- technical innovation: we can now also offer low inductance IGBT terminals
- new patent-pending connection lugs enable unprecedented low inductance connection of the DC link capacitor to the switching transistors
Inversely directed magnetic fields attenuate one another

Reduction of parasitic inductances (ESL) in capacitors – Speaker: Dr. Thomas Ebel
Thank you very much for your attention!

Speaker:
Dr. Thomas Ebel

FTCAP GmbH
Carl-Benz-Straße 1
D-25813 Husum
Germany

Elincom Electronics
Klaverbaan 101
2908 KD Capelle aan den IJssel
010-2640270